
Unicode and Byte Strings



Overview

 Many programmers, including most beginners, deal with simple forms of text 
like ASCII, they can happily work with Python’s basic str string type and its 
associated operations and don’t need to come to grips with more advanced 
string concepts. 

 In fact, such programmers can often ignore the string changes in Python 3.X 
and continue to use strings as they may have in the past.

 On the other hand, many other programmers deal with more specialized types 
of data: non-ASCII character sets, image file contents, and so on. 

 For those programmers, and others who may someday join them, in this 
module we’re going to fill in the rest of the Python string story and look at some 
more advanced concepts in Python’s string model.



String Changes in 3.X

 One of the most noticeable changes in the Python 3.X line is the mutation of 
string object types. 

 In a nutshell, 2.X’s str and unicode types have morphed into 3.X’s bytes and str
types, and a new mutable bytearray type has been added. 

 The bytearray type is technically available in Python 2.6 and 2.7 too (though not 
earlier), but it’s a back-port from 3.X and does not as clearly distinguish between 
text and binary content in 2.X.

 Especially if you process data that is either Unicode or binary in nature, these 
changes can have substantial impacts on your code. 



Who’s affected?

 If you deal with non-ASCII Unicode text—for instance, in the context of 
internationalized domains like the Web, or the results of some XML and JSON 
parsers and databases - you will find support for text encodings to be different 
in 3.X, but also probably more direct, accessible, and seamless than in 2.X.

 If you deal with binary data - for example, in the form of image or audio files or 
packed data processed with the struct module - you will need to understand 
3.X’s new bytes object and 3.X’s different and sharper distinction between text 
and binary data and files.



Who’s affected?

 If you fall into neither of the prior two categories, you can generally use strings 
in 3.X much as you would in 2.X, with the general str string type, text files, and 
all the familiar string operations we studied earlier. Your strings will be encoded 
and decoded by 3.X using your platform’s default encoding (e.g., ASCII, or UTF-
8 on Windows in the U.S. - sys.getdefaultencoding gives your default if you care 
to check), but you probably won’t notice.

In other words, if your text is always ASCII, you can get by with normal string 
objects and text files and can avoid most of the following story for now.



Character Encoding Schemes - ASCII

 Character sets are standards that assign integer codes to individual characters 
so they can be represented in computer memory. 

 The ASCII standard, for example, was created in the U.S., and it defines many 
U.S. programmers’ notion of text strings. 

 ASCII defines character codes from 0 through 127 and allows each character to 
be stored in one 8-bit byte, only 7 bits of which are used.

 For example, the ASCII standard maps the character 'a' to the integer value 97 
(0x61 in hex), which can be stored in a single byte in memory and files.





Character Encoding Schemes – Latin-1

 Sometimes one byte per character isn’t enough, though. Various symbols and 
accented characters, for instance, do not fit into the range of possible 
characters defined by ASCII. 

 To accommodate special characters, some standards use all the possible values 
in an 8-bit byte, 0 through 255, to represent characters, and assign the values 
128 through 255 (outside ASCII’s range) to special characters.

 One such standard, known as the Latin-1 character set, is widely used in 
Western Europe. In Latin-1, character codes above 127 are assigned to accented 
and otherwise special characters. 





Character Encoding Schemes - Unicode

 Still, some alphabets define so many characters that it is impossible to represent 
each of them as one byte. 

 Unicode allows more flexibility. 

 Unicode text is sometimes referred to as “wide-character” strings, because 
characters may be represented with multiple bytes if needed. 

 Unicode is typically used in internationalized programs, to represent European, 
Asian, and other non-English character sets that have more characters than 8-
bit bytes can represent.



Character Encoding Schemes - Unicode

 To store such rich text in computer memory, we say that characters are 
translated to and from raw bytes using an encoding - the rules for translating a 
string of Unicode characters to a sequence of bytes and extracting a string from 
a sequence of bytes.

 Encoding is the process of translating a string of characters into its raw bytes 
form, according to a desired encoding name.

 Decoding is the process of translating a raw string of bytes into its character 
string form, according to its encoding name.



Character Encoding Schemes - Unicode

 That is, we encode from string to raw bytes, and decode from raw bytes to 
string. 

 To scripts, decoded strings are just characters in memory, but may be encoded 
into a variety of byte string representations when stored on files, transferred 
over networks, embedded in documents and databases, and so on.

 For some encodings, the translation process is trivial - ASCII and Latin-1, for 
instance, map each character to a fixed-size single byte, so no translation work 
is required. 

 For other encodings, the mapping can be more complex and yield multiple 
bytes per character, even for simple 8-bit forms of text.



Character Encoding Schemes - Unicode

 The widely used UTF-8 encoding, for example, allows a wide range of 
characters to be represented by employing a variable-sized number of bytes 
scheme. 

 Character codes less than 128 are represented as a single byte; codes between 
128 and 0x7ff (2047) are turned into 2 bytes, where each byte has a value 
between 128 and 255; and codes above 0x7ff are turned into 3- or 4-byte 
sequences having values between 128 and 255. 

 This keeps simple ASCII strings compact, sidesteps byte ordering issues, and 
avoids null (zero value) bytes that can cause problems for C libraries and 
networking.



Character Encoding Schemes

 Because their encodings’ character maps assign characters to the same codes 
for compatibility, ASCII is a subset of both Latin-1 and UTF-8. 

 That is, a valid ASCII character string is also a valid Latin-1- and UTF-8-encoded 
string. 

 For example, every ASCII file is a valid UTF-8 file, because the ASCII character 
set is a 7-bit subset of UTF-8.



Character Encoding Schemes

 Conversely, the UTF-8 encoding is binary compatible with ASCII, but only for 
character codes less than 128. 

 Latin-1 and UTF-8 simply allow for additional characters: Latin-1 for characters 
mapped to values 128 through 255 within a byte, and UTF-8 for characters that 
may be represented with multiple bytes.



Character Encoding Schemes

 Other encodings allow for richer character sets in different ways. 

 UTF-16 and UTF-32, for example, format text with a fixed-size 2 and 4 bytes per 
each character scheme, respectively, even for characters that could otherwise 
fit in a single byte. 

 Some encodings may also insert prefixes that identify byte ordering.





Character Encoding Schemes

 To Python programmers, encodings are specified as strings containing the 
encoding’s name. 

 Python comes with roughly 100 different encodings; see the Python library 
reference for a complete list. 

 Importing the module encodings and running help(encodings) shows you many 
encoding names as well; some are implemented in Python, and some in C. 

 Some encodings have multiple names, too; for example, latin-1, iso_8859_1, 
and 8859 are all synonyms for the same encoding, Latin-1.



How Python Stores Strings in Memory

 In memory, Python always stores decoded text strings in an encoding-neutral 
format, which may or may not use multiple bytes for each character. 

 All text processing occurs in this uniform internal format. 

 Text is translated to and from an encoding-specific format only when it is 
transferred to or from external text files, byte strings, or APIs with specific 
encoding requirements. 

 Once in memory, though, strings have no encoding. 

 They are just the string object.



Python 3.2 and earlier

 Through Python 3.2, strings are stored internally in fixed-length UTF-16 (roughly, 
UCS-2) format with 2 bytes per character, unless Python is configured to use 4 
bytes per character (UCS-4).



Python 3.3 and later

 Python 3.3 and later instead use a variable-length scheme with 1, 2, or 4 bytes 
per character, depending on a string’s content. 

 The size is chosen based upon the character with the largest Unicode ordinal 
value in the represented string. 

 This scheme allows a space-efficient representation in common cases, but also 
allows for full UCS-4 on all platforms.



Python’s String Types

 Python 2.X has a general string type for representing binary data and simple 8-
bit text like ASCII, along with a specific type for representing richer Unicode text:

 str for representing 8-bit text and binary data

 unicode for representing decoded Unicode text

 Python 3.X comes with three string object types - one for textual data and two 
for binary data:

 str for representing decoded Unicode text (including ASCII

 bytes for representing binary data (including encoded text)

 bytearray, a mutable flavor of the bytes type



Why the different string types?

 All three string types in 3.X support similar operation sets, but they have different 
roles.

 The main goal behind this change in 3.X was to merge the normal and Unicode 
string types of 2.X into a single string type that supports both simple and 
Unicode text: developers wanted to remove the 2.X string dichotomy and make 
Unicode processing more natural. 

 Given that ASCII and other 8-bit text is really a simple kind of Unicode, this 
convergence seems logically sound.



How it’s being done?

 To achieve this, 3.X stores text in a redefined str type - an immutable sequence 
of characters (not necessarily bytes), which may contain either simple text such 
as ASCII whose character values fit in single bytes, or richer character set text 
such as UTF-8 whose character values may require multiple bytes. 

 Strings processed by your script with this type are stored generically in memory 
and are encoded to and decoded from byte strings per either the platform 
Unicode default or an explicit encoding name. 

 This allows scripts to translate text to different encoding schemes, both in 
memory and when transferring to and from files.



Binary data

 While 3.X’s new str type does achieve the desired string/unicode merging, many 
programs still need to process raw binary data that is not encoded per any text 
format.

 Image and audio files, as well as packed data used to interface with devices or 
C programs you might process with Python’s struct module, fall into this 
category. 

 Because Unicode strings are decoded from bytes, they cannot be used to 
represent bytes.



Binary data

 To support processing of such truly binary data, a new string type, bytes, also 
was introduced - an immutable sequence of 8-bit integers representing 
absolute byte values, which prints as ASCII characters when possible. 

 Though a distinct object type, bytes supports almost all the same operations 
that the str type does; this includes string methods, sequence operations, and 
even re module pattern matching, but not string formatting. 

 In 2.X, the general str type fills this binary data role, because its strings are just 
sequences of bytes; the separate unicode type handles richer text strings.



Binary data

 In more detail, a 3.X bytes object really is a sequence of small integers, each of 
which is in the range 0 through 255; indexing a bytes returns an int, slicing one 
returns another bytes, and running the list built-in on one returns a list of 
integers, not characters. 

 When processed with operations that assume characters, though, the contents 
of bytes objects are assumed to be ASCII-encoded bytes (e.g., the isalpha
method assumes each byte is an ASCII character code). 

 Further, bytes objects are printed as character strings instead of integers for 
convenience.



bytearray

 While they were at it, Python developers also added a bytearray type in 3.X. 
bytearray is a variant of bytes that is mutable and so supports in-place changes. 

 It supports the usual string operations that str and bytes do, as well as many of 
the same in-place change operations as lists (e.g., the append and extend 
methods, and assignment to indexes). 

 This can be useful both for truly binary data and simple types of text. Assuming 
your text strings can be treated as raw 8-bit bytes (e.g., ASCII or Latin-1 text), 
bytearray finally adds direct in-place mutability for text data - something not 
possible without conversion to a mutable type in Python 2.X, and not supported 
by Python 3.X’s str or bytes.



Python 2.x and 3.x

 Although Python 2.X and 3.X offer much the same functionality, they package it 
differently. 

 In fact, the mapping from 2.X to 3.X string types is not completely direct - 2.X’s 
str equates to both str and bytes in 3.X, and 3.X’s str equates to both str and 
unicode in 2.X. 

 Moreover, the mutability of 3.X’s bytearray is unique.



Text Files

 When a file is opened in text mode, reading its data automatically decodes its 
content and returns it as a str; writing takes a str and automatically encodes it 
before transferring it to the file. 

 Both reads and writes translate per a platform default or a provided encoding 
name. 

 Text-mode files also support universal end-of-line translation and additional 
encoding specification arguments. 

 Depending on the encoding name, text files may also automatically process the 
byte order mark sequence at the start of a file (more on this momentarily).



Binary Files

 When a file is opened in binary mode by adding a b (lowercase only) to the 
mode-string argument in the built-in open call, reading its data does not decode 
it in any way but simply returns its content raw and unchanged, as a bytes
object; writing similarly takes a bytes object and transfers it to the file 
unchanged. 

 Binary-mode files also accept a bytearray object for the content to be written to 
the file.



Text or Binary?

 If you are processing image files, data transferred over networks, packed binary 
data whose content you must extract, or some device data streams, chances 
are good that you will want to deal with it using bytes and binary-mode files. 

 You might also opt for bytearray if you wish to update the data without making 
copies of it in memory.

 If instead you are processing something that is textual in nature, such as 
program output, HTML, email content, or CSV or XML files, you’ll probably want 
to use str and text-mode files.



Python 3.X String Literals

 Python 3.X string objects originate when you call a built-in function such as str 
or bytes, read a file created by calling open (described in the next section), or 
code literal syntax in your script. 

 For the latter, a new literal form, b'xxx' (and equivalently, B'xxx') is used to create 
bytes objects in 3.X, and you may create bytearray objects by calling the 
bytearray function, with a variety of possible arguments.











String Type Conversions

 Although Python 2.X allowed str and unicode type objects to be mixed in 
expressions (when the str contained only 7-bit ASCII text), 3.X draws a much 
sharper distinction - str and bytes type objects never mix automatically in 
expressions and never are converted to one another automatically when passed 
to functions. 

 A function that expects an argument to be a str object won’t generally accept a 
bytes, and vice versa.



String Type Conversions

 Because of this, Python 3.X basically requires that you commit to one type or 
the other, or perform manual, explicit conversions when needed:

 str.encode() and bytes(S, encoding) translate a string to its raw bytes form and create 
an encoded bytes from a decoded str in the process.

 bytes.decode() and str(B, encoding) translate raw bytes into its string form and create 
a decoded str from an encoded bytes in the process.







Coding ASCII Text



Coding Non-ASCII Text



Encoding and Decoding Non-ASCII text



Encoding and Decoding Non-ASCII text



Encoding and Decoding Non-ASCII text



Byte String Literals: Encoded Text

 Two cautions here too. 

 First, Python 3.X allows special characters to be coded with both hex and 
Unicode escapes in str strings, but only with hex escapes in bytes strings -
Unicode escape sequences are silently taken verbatim in bytes literals, not as 
escapes. In fact, bytes must be decoded to str strings to print their non-ASCII 
characters properly.

 Second, bytes literals require characters either to be ASCII characters or, if their 
values are greater than 127, to be escaped; str stings, on the other hand, allow 
literals containing any character in the source character set - which, defaults to 
UTF-8 unless an encoding declaration is given in the source file.







Converting Encodings 



Source File Character Set Encoding 
Declarations 

 To interpret the content of strings you code and hence embed within the text of 
your script files, Python uses the UTF-8 encoding by default, but it allows you to 
change this to support arbitrary character sets by including a comment that 
names your desired encoding. 

 The comment must be of this form and must appear as either the first or 
second line in your script in either Python 2.X or 3.X







Using 3.X bytes Objects

 The 3.X bytes object is a sequence of small integers, each of which is in the 
range 0 through 255, that happens to print as ASCII characters when displayed. 

 It supports sequence operations and most of the same methods available on str 
objects (and present in 2.X’s str type). 

 However, bytes does not support the for mat method or the % formatting 
expression, and you cannot mix and match bytes and str type objects without 
explicit conversions - you generally will use all str type objects and text files for 
text data, and all bytes type objects and binary files for binary data.



Method Calls







Sequence 
Operations 



Other 
Ways to 
Make 
bytes 
Objects



Mixing String Types



Mixing String Types



Using 3.X/2.6+ bytearray Objects

 Python 3.X grew a third string type, though - bytearray, a mutable sequence of 
integers in the range 0 through 255, which is a mutable variant of bytes. 

 As such, it supports the same string methods and sequence operations as bytes, 
as well as many of the mutable in-place-change operations supported by lists.

 Bytearrays support in-place changes to both truly binary data as well as simple 
forms of text such as ASCII, which can be represented with 1 byte per character 
(richer Unicode text generally requires Unicode strings, which are still 
immutable). 

 The bytear ray type is also available in Python 2.6 and 2.7 as a back-port from 
3.X, but it does not enforce the strict text/binary distinction there that it does in 
3.X.



bytearrays in Action



bytearrays in Action



bytearrays in Action



byte vs bytearray



Text File Basics 



Text and Binary Modes



Text and Binary Modes



Type and Content Mismatches in 3.X



Reading and Writing Unicode in 3.X



Manual encoding 



File output encoding 



File input decoding



Decoding mismatches



Handling the BOM in 3.X

 Some encoding schemes store a special byte order marker (BOM) sequence at 
the start of files, to specify data endianness (which end of a string of bits is most 
significant to its value) or declare the encoding type. 

 Python both skips this marker on input and writes it on output if the encoding 
name implies it, but we sometimes must use a specific encoding name to force 
BOM processing explicitly.



Handling the BOM in 3.X

 For example, in the UTF-16 and UTF-32 encodings, the BOM specifies big- or 
little-endian format. 

 A UTF-8 text file may also include a BOM, but this isn’t guaranteed, and serves 
only to declare that it is UTF-8 in general. 

 When reading and writing data using these encoding schemes, Python 
automatically skips or writes the BOM if it is either implied by a general 
encoding name, or if you provide a more specific encoding name to force the 
issue. 



Dropping the BOM in Notepad

 Let’s make some files with BOMs to see how this works in practice. 

 When you save a text file in Windows Notepad, you can specify its encoding 
type in a drop-down list - simple ASCII text, UTF-8, or little- or big-endian UTF-
16. 

 If a two-line text file named spam.txt is saved in Notepad as the encoding type 
ANSI, for instance, it’s written as simple ASCII text without a BOM. When this file 
is read in binary mode in Python, we can see the actual bytes stored in the file. 

 When it’s read as text, Python performs end-of-line translation by default; we 
can also decode it as explicit UTF-8 text since ASCII is a subset of this scheme 
(and UTF-8 is Python 3.X’s default encoding)









Dropping 
the BOM 
in Python


