Unicode and Byte Strings

Overview

Many programmers, including most beginners, deal with simple forms of text
like ASCII, they can happily work with Python's basic str string type and its
associated operations and don't need to come to grips with more advanced
string concepts.

In fact, such programmers can often ignore the string changes in Python 3.X
and continue to use strings as they may have in the past.

On the other hand, many other programmers deal with more specialized types
of data: non-ASCII character sets, image file contents, and so on.

For those programmers, and others who may someday join them, in this
module we're going to fill in the rest of the Python string story and look at some
more advanced concepts in Python's string model.

String Changes in 3.X

One of the most noticeable changes in the Python 3.X line is the mutation of
string object types.

In a nutshell, 2.X's str and unicode types have morphed into 3.X's bytes and str
types, and a new mutable bytearray type has been added.

The bytearray type is technically available in Python 2.6 and 2.7 too (though not
earlier), but it's a back-port from 3.X and does not as clearly distinguish between
text and binary contentin 2.X.

Especially if you process data that is either Unicode or binary in nature, these
changes can have substantial impacts on your code.

Who's affected?

If you deal with non-ASCII Unicode text—for instance, in the context of
internationalized domains like the Web, or the results of some XML and JSON
parsers and databases - you will find support for text encodings to be different
in 3.X, but also probably more direct, accessible, and seamless than in 2.X.

If you deal with binary data - for example, in the form of image or audio files or
packed data processed with the struct module - you will need to understand
3.X's new bytes object and 3.X's different and sharper distinction between text
and binary data and files.

Who's affected?

If you fall into neither of the prior two categories, you can generally use strings
in 3.X much as you would in 2.X, with the general str string type, text files, and
all the familiar string operations we studied earlier. Your strings will be encoded
and decoded by 3.X using your platform’s default encoding (e.g., ASCII, or UTF-
8 on Windows in the U.S. - sys.getdefaultencoding gives your default if you care
to check), but you probably won't notice.

In other words, If your text is always ASCII, you can get by with normal string
objects and text files and can avoid most of the following story for now.

Character Encoding Schemes - ASCII

Character sets are standards that assign integer codes to individual characters
so they can be represented in computer memory.

The ASCII standard, for example, was created in the U.S., and it defines many
U.S. programmers’ notion of text strings.

ASCI| defines character codes from O through 127/ and allows each character to
be stored in one 8-bit byte, only / bits of which are used.

For example, the ASCII standard maps the character ‘a’ to the integer value 97
(Ox61 in hex), which can be stored in a single byte in memory and files.

>>> ord('a") # 'a'is a byte with binary value 97 in ASCII (and others)

97
>>> hex(97)

'0x61°
>>> chr(97) # Binary value 97 stands for character 'a'
la !

Character Encoding Schemes — Latin-1

Sometimes one byte per character isn't enough, though. Various symbols and
accented characters, for instance, do not fit into the range of possible
characters defined by ASCII.

To accommodate special characters, some standards use all the possible values
in an 8-bit byte, 0 through 255, to represent characters, and assign the values
128 through 255 (outside ASCII's range) to special characters.

One such standard, known as the Latin-1 character set, is widely used in
Western Europe. In Latin-1, character codes above 12/ are assigned to accented
and otherwise special characters.

>>> 0xC4
196

>>> chr(196) # Python 3.X result form shown
|A|

Character Encoding Schemes - Unicode

Still, some alphabets define so many characters that it is impossible to represent
each of them as one byte.

Unicode allows more flexibility.

Unicode text is sometimes referred to as "wide-character” strings, because
characters may be represented with multiple bytes if needed.

Unicode is typically used in internationalized programs, to represent European,
Asian, and other non-English character sets that have more characters than 8-
bit bytes can represent.

Character Encoding Schemes - Unicode

To store such rich text in computer memory, we say that characters are
translated to and from raw bytes using an encoding - the rules for translating a

string of Unicode characters to a sequence of bytes and extracting a string from
a sequence of bytes.

Encoding is the process of translating a string of characters into its raw bytes
form, according to a desired encoding name.

Decoding is the process of translating a raw string of bytes into its character
string form, according to its encoding hame.

Character Encoding Schemes - Unicode

Thatis, we encode from string to raw bytes, and decode from raw bytes to
string.

To scripts, decoded strings are just characters in memory, but may be encoded
iInto a variety of byte string representations when stored on files, transferred
over networks, embedded in documents and databases, and so on.

For some encodings, the translation process is trivial - ASCII and Latin-1, for

iInstance, map each character to a fixed-size single byte, so no translation work
IS required.

For other encodings, the mapping can be more complex and yield multiple
bytes per character, even for simple 8-bit forms of text.

Character Encoding Schemes - Unicode

The widely used UTF-8 encoding, for example, allows a wide range of

characters to be represented by employing a variable-sized number of bytes
scheme.

Character codes less than 128 are represented as a single byte; codes between
128 and Ox/ff (2047) are turned into 2 bytes, where each byte has a value
between 128 and 255; and codes above Ox/ff are turned into 3- or 4-byte
sequences having values between 128 and 255.

This keeps simple ASCII strings compact, sidesteps byte ordering issues, and
avoids null (zero value) bytes that can cause problems for C libraries and
networking.

Character Encoding Schemes

Because their encodings’ character maps assign characters to the same codes
for compatibility, ASCII is a subset of both Latin-1 and UTF-8,

That is, a valid ASCII character string is also a valid Latin-1- and UTF-8-encoded
string.

For example, every ASCII file is a valid UTF-8 file, because the ASCII character
setis a /-bit subset of UTF-8.

Character Encoding Schemes

Conversely, the UTF-8 encoding is binary compatible with ASCII, but only for
character codes less than 128.

Latin-1 and UTF-8 simply allow for additional characters: Latin-1 for characters
mapped to values 128 through 255 within a byte, and UTF-8 for characters that
may be represented with multiple bytes.

Character Encoding Schemes

Other encodings allow for richer character sets in different ways.

UTF-16 and UTF-32, for example, format text with a fixed-size 2 and 4 bytes per
each character scheme, respectively, even for characters that could otherwise
fit in a single byte.

Some encodings may also insert prefixes that identify byte ordering.

>>> S = "'ni'

>>> S.encode('ascii'), S.encode('latin1i'), S.encode('utf8')
(b'ni', b'ni', b'ni")

>>> S.encode('utf16'), len(S.encode('utf16'))
(b'\xff\xfen\x00i\x00', 6)

>>> S.encode('utf32'), len(S.encode('utf32'))
(b' \xff\xfe\x00\x00n\x00\x00\x00i\x00\x00\x00"', 12)

Character Encoding Schemes

To Python programmers, encodings are specified as strings containing the
encoding’'s name.

Python comes with roughly 100 different encodings; see the Python library
reference for a complete list.

Importing the module encodings and running help(encodings) shows you many
encoding names as well; some are implemented in Python, and some in C.

Some encodings have multiple names, too; for example, latin-1, iso_8859_1,
and 8859 are all synonyms for the same encoding, Latin-1.

How Python Stores Strings in Memory

In memory, Python always stores decoded text strings in an encoding-neutral
format, which may or may not use multiple bytes for each character.

All text processing occurs in this uniform internal format.

Text is translated to and from an encoding-specific format only when it is
transferred to or from external text files, byte strings, or APIs with specific
encoding requirements.

Once in memory, though, strings have no encoding.

They are just the string object.

Python 3.2 and earlier

Through Python 3.2, strings are stored internally in fixed-length UTF-16 (roughly,
UCS-2) format with 2 bytes per character, unless Python is configured to use 4
bytes per character (UCS-4).

Python 3.3 and later

Python 3.3 and later instead use a variable-length scheme with 1, 2, or 4 bytes
per character, depending on a string’'s content.

The size is chosen based upon the character with the largest Unicode ordinal
value in the represented string.

This scheme allows a space-efficient representation in common cases, but also
allows for full UCS-4 on all platforms.

Python’s String Types

Python 2.X has a general string type for representing binary data and simple 8-
bit text like ASCII, along with a specific type for representing richer Unicode text:

str for representing 8-bit text and binary data
unicode for representing decoded Unicode text

Python 3.X comes with three string object types - one for textual data and two
for binary data:

str for representing decoded Unicode text (including ASCII
bytes for representing binary data (including encoded text)

bytearray, a mutable flavor of the bytes type

Why the different string types?

All three string types in 3.X support similar operation sets, but they have different
roles.

The main goal behind this change in 3.X was to merge the normal and Unicode
string types of 2.X into a single string type that supports both simple and
Unicode text: developers wanted to remove the 2.X string dichotomy and make
Unicode processing more natural.

Given that ASCII and other 8-bit text is really a simple kind of Unicode, this
convergence seems logically sound.

How it's being done?

To achieve this, 3.X stores text in a redefined str type - an immutable sequence
of characters (not necessarily bytes), which may contain either simple text such
as ASCIlI whose character values fit in single bytes, or richer character set text
such as UTF-8 whose character values may require multiple bytes.

Strings processed by your script with this type are stored generically in memory
and are encoded to and decoded from byte strings per either the platform
Unicode default or an explicit encoding name.

This allows scripts to translate text to different encoding schemes, both in
memory and when transferring to and from files.

Binary data

While 3.X's new str type does achieve the desired string/unicode merging, many
programs still need to process raw binary data that is not encoded per any text
format.

Image and audio files, as well as packed data used to interface with devices or
C programs you might process with Python's struct module, fall into this
category.

Because Unicode strings are decoded from bytes, they cannot be used to
represent bytes.

Binary data

To support processing of such truly binary data, a new string type, bytes, also
was introduced - an immutable sequence of 8-bit integers representing
absolute byte values, which prints as ASCII characters when possible.

Though a distinct object type, bytes supports almost all the same operations
that the str type does; this includes string methods, sequence operations, and
even re module pattern matching, but not string formatting.

In 2.X, the general str type fills this binary data role, because its strings are just
sequences of bytes; the separate unicode type handles richer text strings.

Binary data

In more detail, a 3.X bytes object really is a sequence of small integers, each of
which is in the range O through 255; indexing a bytes returns an int, slicing one
returns another bytes, and running the list built-in on one returns a list of
iIntegers, not characters.

When processed with operations that assume characters, though, the contents
of bytes objects are assumed to be ASCll-encoded bytes (e.g., the isalpha
method assumes each byte is an ASCII character code).

Further, bytes objects are printed as character strings instead of integers for
convenience.

bytearray

While they were at it, Python developers also added a bytearray type in 3.X.
bytearray is a variant of bytes that is mutable and so supports in-place changes.

It supports the usual string operations that str and bytes do, as well as many of
the same in-place change operations as lists (e.g., the append and extend
methods, and assignment to indexes).

This can be useful both for truly binary data and simple types of text. Assuming
your text strings can be treated as raw 8-bit bytes (e.g., ASCII or Latin-1 text),
bytearray finally adds direct in-place mutability for text data - something not
possible without conversion to a mutable type in Python 2.X, and not supported
by Python 3.X's str or bytes.

Python 2.x and 3.x

Although Python 2.X and 3.X offer much the same functionality, they package it
differently.

In fact, the mapping from 2.X to 3.X string types is not completely direct - 2.X’s

str equates to both str and bytes in 3.X, and 3.X's str equates to both str and
unicode in 2.X.

Moreover, the mutability of 3.X's bytearray is unique.

Text Files

When a file is opened in text mode, reading its data automatically decodes its
content and returns it as a str; writing takes a str and automatically encodes it
before transferring it to the file.

Both reads and writes translate per a platform default or a provided encoding
name.

Text-mode files also support universal end-of-line translation and additional
encoding specification arguments.

Depending on the encoding name, text files may also automatically process the
byte order mark sequence at the start of a file (more on this momentarily).

Binary Files

When a file is opened in binary mode by adding a b (lowercase only) to the
mode-string argument in the built-in open call, reading its data does not decode
It in any way but simply returns its content raw and unchanged, as a bytes

object; writing similarly takes a bytes object and transfers it to the file
unchanged.

Binary-mode files also accept a bytearray object for the content to be written to
the file.

Text or Binary?

If you are processing image files, data transferred over networks, packed binary
data whose content you must extract, or some device data streams, chances
are good that you will want to deal with it using bytes and binary-mode files.

You might also opt for bytearray if you wish to update the data without making
copies of it in memory.

If iInstead you are processing something that is textual in nature, such as
program output, HTML, email content, or CSV or XML files, you'll probably want
to use str and text-mode files.

Python 3.X String Literals

Python 3.X string objects originate when you call a built-in function such as str
or bytes, read a file created by calling open (described in the next section), or
code literal syntax in your script.

For the latter, a new literal form, b'xxx" (and equivalently, B'xxx') is used to create
bytes objects in 3.X, and you may create bytearray objects by calling the
bytearray function, with a variety of possible arguments.

C:\code> C:\python33\python
>>> B = b'spam'’ # 3.X bytes literal make a bytes object (8-bit bytes)
>>> S = 'eggs' # 3.X str literal makes a Unicode text string

>>> type(B), type(s)
(<class 'bytes'>, <class 'str'>)

>>> B # bytes: sequence of int, prints as character string
b'spam’

> 5

'eggs’

The 3. X bytes object is actually a sequence of short integers, though it prints its content
as characters whenever possible:

>>> B[0], S[0] # Indexing returns an int for bytes, str for str

(115, 'e’)

»»> Bla:], S|az] # Slicing makes another bytes or str object

(b’pam’, 'ggs")

>>> list(B), list(S)

([115; 112, 97, 108], ["e's "g's "E's '5'D) # Dytes is really 8-bit small ints

The bytes object is also immutable, just like str (though bytearray, described later, is
not); you cannot assign a str, bytes, or integer to an offset of a bytes object.

>>> B[0] = "x' # Both are immutable
TypeError: 'bytes' object does not support item assignment

>> S[0] = 'x'

TypeError: 'str' object does not support item assignment

Finally, note that the bytes literal’s b or B prefix also works for any string literal form,
including triple-quoted blocks, though you get back a string of raw bytes that may or
may not map to characters:

>>> # bytes prefix works on single, double, triple quotes, raw
>>> B - Bl‘lllll
. XXXX

- YYYy

>>> B
b' \nxxxx\nyyyy\n'

String Type Conversions

Although Python 2 X allowed str and unicode type objects to be mixed in
expressions (when the str contained only 7-bit ASCII text), 3.X draws a much
sharper distinction - str and bytes type objects never mix automatically in

expressions and never are converted to one another automatically when passed
to functions.

A function that expects an argument to be a str object won't generally accept a
bytes, and vice versa.

String Type Conversions

Because of this, Python 3.X basically requires that you commit to one type or
the other, or perform manual, explicit conversions when needed:

strencode() and bytes(S, encoding) translate a string to its raw bytes form and create
an encoded bytes from a decoded str in the process.

bytes.decode() and str(B, encoding) translate raw bytes into its string form and create
a decoded str from an encoded bytes in the process.

>>> S = 'eggs'

>>> S.encode()

b'eggs’

>>> bytes(S, encoding="ascii')
b'eggs’

>>> B = b'spam’

>>> B.decode()

‘spam’

>>> str(B, encoding='ascii')
‘spam’

str->bytes: encode text into raw bytes

str->bytes, alternative

bytes->str: decode raw bytes into text

bytes->str, alternative

>>> import sys

>>> sys.platform # Underlying platform
‘win32’

>>> sys.getdefaultencoding() # Default encoding for str here
‘utf-8'

>>> bytes(S)

TypeError: string argument without an encoding

>>> str(B) # str without encoding
"b'spam"" # A print string, not conversion!
>>> len(str(B))

7

>>> len(str(B, encoding="ascii')) # Use encoding to convert to str

4

Coding ASCII Text

C:\code> C:\python33\python

>>> ord('X") # 'X"is binary code point value 88 in the default encoding
88

>>> chr(88) # 88 stands for character 'X'

L Xl

> 5= "X¥I" # A Unicode string of ASCII text

20¥ 8

'XYZ'

>>> len(S) # Three characters long

3

>>> [ord(c) for ¢ in S] # Three characters with integer ordinal values
[88, 89, 90]

Coding Non-ASCII Text

>>> chr(oxc4) # 0xC4, OxES: characters outside ASCII's range
I‘A!

>>> chr(oxe8)

1 é 1
>> S
>>> S
' Aé [

"\xc4\xe8' # Single 8-bit value hex escapes: two digits

»> S
>»> S
' Aé 1
>>> len(S) # Two characters long (not number of bytes!)
2

"\uooc4\uooes' # 16-bit Unicode escapes: four digits each

Encoding and Decoding Non-ASClI text

>> S = "\uo0c4\uooe8' # Non-ASCII text string, two characters long
»> S

lAé 1

>>> len(S)

2

>>> S.encode('ascii')
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1:
ordinal not in range(128)

Encoding and Decoding Non-ASClI text

>>> S.encode('latin-1") # 1 byte per character when encoded
b'\xc4\xe8'
>>> S.encode('utf-8") # 2 bytes per character when encoded

b'\xc3\x84\xc3\xa8'

>>> len(S.encode('latin-1")) # 2 bytes in latin-1, 4 in utf-8
2

>>> len(S.encode('utf-8"'))

4

Encoding and Decoding Non-ASClI text

>>> B = b"\xc4\xe8' # Text encoded per Latin-1

>»>> B

b'\xc4\xe8'

>>> len(B) # 2 raw bytes, two encoded characters
2

>>> B.decode('latin-1") # Decode to text per Latin-1

|A\e]

>>> B = b'\xc3\x84\xc3\xa8' # Text encoded per UTF-8

>>> len(B) # 4 raw bytes, two encoded characters
4

>>> B.decode('utf-8") # Decode to text per UTF-8

|'Aé]

>>> len(B.decode('utf-8"')) # Two Unicode characters in memory

2

Byte String Literals: Encoded Text

Two cautions here too.

First, Python 3.X allows special characters to be coded with both hex and
Unicode escapes in str strings, but only with hex escapes in bytes strings -
Unicode escape sequences are silently taken verbatim in bytes literals, not as

escapes. In fact, bytes must be decoded to str strings to print their non-ASCI|
characters properly.

Second, bytes literals require characters either to be ASCII characters or, if their
values are greater than 12/, to be escaped; str stings, on the other hand, allow
literals containing any character in the source character set - which, defaults to
UTF-8 unless an encoding declaration is given in the source file.

>>> S = 'A\xC4B\xE8C'

>»»> S

'AABeC'

>>> S = "A\u00C4B\U000000OESC"
>»> S

'AABeC'

>>> B = b'A\xC4B\xE8C'

>>> B

b'A\xc4B\xe8C'

>>> B = b'A\u00C4B\U00000OESC'
>> B

b'A\\uooC4B\\U00000OESC'

>>> B = b'A\xC4B\xES8C'
>>> B

b'A\xc4B\xe8C'

>>> print(B)
b'A\xc4B\xe8C'

>>> B.decode('latin-1")
'AABeC'

3.X: str recognizes hex and Unicode escapes

bytes recognizes hex but not Unicode

Escape sequences taken literally!

Use hex escapes for bytes
Prints non-ASCII as hex

Decode as latin-1 to interpret as text

>>> S = 'AABeC’ # Chars from UTF-8 if no encoding declaration
> &
'AABeC'

>>> B = b'AAB&C'
SyntaxError: bytes can only contain ASCII literal characters.

>>> B = b"A\xC4B\xE8C' # Chars must be ASCII, or escapes
>>> B

b'A\xc4B\xe8C'

>>> B.decode('latin-1")

'AABeC'
>>> S.encode() # Source code encoded per UTF-8 by default
b'A\xc3\x84B\xc3\xa8C' # Uses system default to encode, unless passed

>>> S.encode('utf-8')
b'A\xc3\x84B\xc3\xa8C'

>>> B.decode() # Raw bytes do not correspond to utf-8
UnicodeDecodeError: 'utf8' codec can't decode bytes in position 1-2: ...

Converting Encodings

>>> B = b'A\xc3\x84B\xc3\xa8C' # Text encoded in UTF-8 format originally
>>> S = B.decode('utf-8") # Decode to Unicode text per UTF-8

>> S

'AABeC'

>>> T = S.encode('cp500") # Convert to encoded bytes per EBCDIC
»> T

b'\xc1c\xc2T\xc3'

>>> U = T.decode('cp500") # Convert back to Unicode per EBCDIC
»> U

'AAB&C'

>>> U.encode() # Per default utf-8 encoding again

b'A\xc3\x84B\xc3\xa8C'

Source File Character Set Encoding

Declarations

To interpret the content of strings you code and hence embed within the text of
your script files, Python uses the UTF-8 encoding by default, but it allows you to
change this to support arbitrary character sets by including a comment that
names your desired encoding.

The comment must be of this form and must appear as either the first or
second line in your script in either Python 2.X or 3.X

-*- coding: latin-1 -*-

-*- coding: latin-1 -*-

Any of the following string literal forms work in latin-1.

Changing the encoding above to either ascii or utf-8 fails,
because the Oxc4 and 0xe8 in myStrl are not valid in either.

myStri = ‘aABeC'
myStr2 = 'A\u00c4B\U000000e8C"
myStr3 = 'A" + chr(oxC4) + 'B' + chr(oxE8) + 'C'

import sys
print('Default encoding:', sys.getdefaultencoding())

for aStr in myStri, myStr2, myStr3:
print('{0}, strlen={1}, '.format(aStr, len(aStr)), end="")

bytes1 = aStr.encode() # Per default utf-8: 2 bytes for non-ASCII
bytes2 = aStr.encode('latin-1") # One byte per char
#bytes3 = aStr.encode('ascii') # ASCII fails: outside 0..127 range

print('byteslen1i={0}, byteslen2={1}'.format(len(bytes1), len(bytes2)))

C:\code> C:\python33\python text.py
Default encoding: utf-8
aABeC, strlen=5, byteslen1=7, byteslen2=5

AABeC, strlen=5, bytesleni=7, byteslen2=5
AABeC, strlen=5, bytesleni=7, byteslen2=5

Using 3.X bytes Objects

The 3.X bytes object is a sequence of small integers, each of which is in the
range O through 255, that happens to print as ASCII characters when displayed.

It supports sequence operations and most of the same methods available on str
objects (and present in 2.X's str type).

However, bytes does not support the for mat method or the % formatting
expression, and you cannot mix and match bytes and str type objects without
explicit conversions - you generally will use all str type objects and text files for
text data, and all bytes type objects and binary files for binary data.

Method Calls

C:\code> C:\python33\python

Attributes in str but not bytes
>>> set(dir('abc')) - set(dir(b'abc'))
{'isdecimal', ' mod ', ' rmod ', 'format map', 'isprintable’,

‘casefold', 'format', 'isnumeric', 'isidentifier', 'encode'}

Attributes in bytes but not str
>>> set(dir(b'abc')) - set(dir('abc'))
{'decode', 'fromhex'}

>>> B = b'spam’ #b'..." bytes literal
>>> B.find(b'pa')
1

>>> B.replace(b'pa’, b'XY") # bytes methods expect bytes arguments
b'sXYm'

>>> B.split(b'pa') # bytes methods return bytes results
[b's', b'm']

>>> B

b'spam’

>>> B[0] = "x'

TypeError: 'bytes' object does not support item assignment

>>> '%s' % 99

99"

>>> b'%s' % 99

TypeError: unsupported operand type(s) for %: 'bytes' and 'int

>>> '{0}'.format(99)

99"

>>> b'{0}"'.format(99)

AttributeError: 'bytes' object has no attribute 'format'

>>> B = b'spam’
>>> B
b'spam’

>>> B[0]
115
>>> B[-1]
109

>>> chr(B[0])
e

>>> list(B)
[115, 112, 97, 109]

>>> B[1:], B[:-1]
(b'pam', b'spa')
>>> len(B)

4

>>> B + b'lmn’
b'spamlmn'

>>> B * 4

b' spamspamspamspam’

A sequence of small ints
Prints as ASCII characters (and/or hex escapes)

Indexing yields an int

Show character for int

Show all the byte's int values

Sequence

Operations

>>> B = b'abc'
>>> B

b'abc'

>»> B
>>> B
b'abc'

bytes('abc', 'ascii')

>>> ord('a')
97

>>> B = bytes([97, 98, 99])
>>> B

b'abc'

>>> B = "spam'.encode()
>>> B

b'spam’

>>>

>>> § = B.decode()

>»> S

"spam'

Literal

Constructor with encoding name

Integer iterable

str.encode() (or bytes())

bytes.decode() (or str())

Other
Ways to
Make
bytes

Objects

Mixing String Types

Must pass expected types to function and method calls
>>> B = b'spam'

>>> B.replace('pa', 'XY')
TypeError: expected an object with the buffer interface

>>> B.replace(b'pa', b'XY")
b'sXYm'

>>> B = B'spam'
>>> B.replace(bytes('pa'), bytes('xy'))
TypeError: string argument without an encoding

>>> B.replace(bytes('pa', 'ascii'), bytes('xy', 'utf-8'))
b'sxym'

Mixing String Types

Must convert manually in 3.X mixed-type expressions

>>> b'ab' + 'cd'
TypeError: can't concat bytes to str

>>> b'ab'.decode() + 'cd' # bytes to str
"abcd’
>>> b'ab" + 'cd'.encode() # str to bytes
b'abcd'
>>> b'ab' + bytes('cd', 'ascii') # str to bytes

b'abcd'

Using 3.X/2.6+ bytearray Objects

Python 3.X grew a third string type, though - bytearray, a mutable sequence of
integers in the range O through 255, which is a mutable variant of bytes.

As such, it supports the same string methods and sequence operations as bytes,
as well as many of the mutable in-place-change operations supported by lists.

Bytearrays support in-place changes to both truly binary data as well as simple
forms of text such as ASCII, which can be represented with 1 byte per character
(richer Unicode text generally requires Unicode strings, which are still
immutable).

The bytear ray type is also available in Python 2.6 and 2.7 as a back-port from
3.X, but it does not enforce the strict text/binary distinction there that it does in
3.X.

bytearrays in Action

Creation in 2.6/2.7: a mutable sequence of small (0..255) ints

>>> S = 'spam'
>>> C = bytearray(S) # A back-port from 3.X in 2.6+
»> C #Db'..'=="."in 2.6+ (str)

bytearray(b'spam')

bytearrays in Action

Creation in 3.X: text/binary do not mix

>»> S = 'spam'
>>> C = bytearray(S)
TypeError: string argument without an encoding

>>> C = bytearray(S, 'latin1') # A content-specific type in 3.X
> £
bytearray(b'spam")

>>> B = b'spam’ #D'.."!1="."in 3.X (bytes/str)
>>> C = bytearray(B)
i B

bytearray(b'spam")

bytearrays in Action

Mutable, but must assign ints, not strings

>>> C[0]

115

>> C[o] = 'x' # This and the next work in 2.6/2.7
TypeError: an integer is required

>»> C[0] = b'x'

TypeError: an integer is required

>>> C[0] = ord('x") # Use ord() to get a character's ordinal
% €

bytearray(b'xpam')

>»> C[1] = b'Y'[0] # Or index a byte string
»> C
bytearray(b'xYam")

byte vs bytearray

in bytes but not bytearray
>>> set(dir(b'abc')) - set(dir(bytearray(b'abc')))
{' getnewargs '}

in bytearray but not bytes

>>> set(dir(bytearray(b'abc'))) - set(dir(b'abc'))

{* iadd ', 'reverse', ' setitem ', 'extend', 'copy', ' alloc ',

' delitem ', ' imul ', 'remove', 'clear', 'insert', 'append', 'pop'}

Text File Basics

C:\code> C:\python33\python
Basic text files (and strings) work the same as in 2.X

>>> file
>>> size

open('temp', 'w')
file.write('abc\n')

>>> file.close()

>>> file
>>> text
>>> text
"abc\n'

open('temp')
file.read()

>>> print(text)

abc

Returns number of characters written
Manual close to flush output buffer

Default mode is "r" (== "rt"): text input

Text and Binary Modes

C:\code> C:\python27\python

>>> open('temp’,
>>> open('temp’,
‘abd\n'

>>> open('temp’,
"abd\r\n'

>>> open('temp',
>>> open('temp’,
‘abc\n'
>>> open('temp',
‘abc\n'

'w').write('abd\n')
'r').read()

'rb').read()
'wb').write('abc\n")
'r').read()

'rb').read()

Write in text mode: adds \r
Read in text mode: drops \r

Read in binary mode: verbatim

Write in binary mode
\n not expanded to \r\n

Text and Binary Modes

C:\code> C:\python33\python
Write and read a text file

>>> open('temp', 'w').write('abc\n') # Text mode output, provide a str

4

>>> open('temp', 'r').read() # Text mode input, returns a str
‘abc\n'

>>> open('temp', 'rb').read() # Binary mode input, returns a bytes

b'abc\r\n'

Type and Content Mismatches in 3.X

Types are not flexible for file content

>>> open('temp', 'w').write('abc\n') # Text mode makes and requires str
4

>>> open('temp', 'w').write(b'abc\n')

TypeError: must be str, not bytes

>>> open('temp', 'wb').write(b'abc\n") # Binary mode makes and requires bytes
4

>>> open('temp', 'wb').write('abc\n')

TypeError: 'str' does not support the buffer interface

Reading and Writing Unicode in 3.X

C:\code> C:\python33\python

>>> S = "A\xc4B\xe8C' # Five-character decoded string, non-ASCII
>»> S

'AABeC'

>>> len(S)

5

Manual encoding

Encode manually with methods

>>> L = S.encode('latin-1") # 5 bytes when encoded as latin-1
»>»> L

b'A\xc4B\xe8C'

>>> len(L)

5

>>> U = S.encode('utf-8") # 7 bytes when encoded as utf-8
»> U

b"A\xc3\x84B\xc3\xa8C'

>>> len(U)

7

File output encoding

Encoding automatically when written

>>> open('latindata’, 'w', encoding='latin-1').write(S)
5

>>> open('utf8data’, 'w', encoding="utf-8').write(S)

5

>>> open('latindata', 'rb').read()
b'A\xc4B\xe8C'

>>> open('utf8data’, 'rb').read()
b'A\xc3\x84B\xc3\xa8C'

Write as latin-1

Write as utf-8

Read raw bytes

Different in files

File input decoding

Decoding automatically when read

>>> open('latindata’, 'r', encoding='latin-1').read()
' AABeC'

>>> open('utf8data', 'r', encoding='utf-8').read()

' AABeC'

>>> X = open('latindata’, 'rb').read()
>>> X.decode('latin-1'")

'AABeC'

>>> X = open('utf8data', 'rb').read()
>>> X.decode()

'AABeC'

Decoded on input

Per encoding type

Manual decoding:
Not necessary

UTF-8 is default

Decoding mismatches

>>> file = open(r'C:\Python33\python.exe', 'r')
>>> text = file.read()
UnicodeDecodeError: 'charmap' codec can't decode byte 0x90 in position 2: ..

>>> file = open(r'C:\Python33\python.exe', 'rb")

>>> data = file.read()

>>> data[:20]
b'MZ\x90\x00\x03\x00\x00\x00\x04\x00\x00\x00\xff\xff\x00\x00\xb8\x00\x00\x00"

Handling the BOM in 3.X

Some encoding schemes store a special byte order marker (BOM) sequence at
the start of files, to specify data endianness (which end of a string of bits is most
significant to its value) or declare the encoding type.

Python both skips this marker on input and writes it on output if the encoding
name implies it, but we sometimes must use a specific encoding name to force
BOM processing explicitly.

Handling the BOM in 3.X

For example, in the UTF-16 and UTF-32 encodings, the BOM specifies big- or
little-endian format.

A UTF-8 text file may also include a BOM, but this isn't guaranteed, and serves
only to declare that it is UTF-8 in general.

When reading and writing data using these encoding schemes, Python
automatically skips or writes the BOM if it is either implied by a general
encoding name, or if you provide a more specific encoding name to force the

Issue.

Dropping the BOM in Notepad

Let's make some files with BOMs to see how this works in practice.

When you save a text file in Windows Notepad, you can specify its encoding
type in a drop-down list - simple ASCII text, UTF-8, or little- or big-endian UTF-

16.

If a two-line text file named spam.txt is saved in Notepad as the encoding type
ANSI, for instance, it's written as simple ASCII text without a BOM. When this file
IS read in binary mode in Python, we can see the actual bytes stored in the file.

When it's read as text, Python performs end-of-line translation by default; we
can also decode it as explicit UTF-8 text since ASCII is a subset of this scheme
(and UTF-8 is Python 3.X's default encoding)

C:\code> C:\python33\python # File saved in Notepad
>>> import sys

>>> sys.getdefaultencoding()

‘utf-8'

>>> open('spam.txt', 'rb').read() # ASCII (UTF-8) text file

b'spam\r\nSPAM\r\n'

>>> open('spam.txt', 'r').read() # Text mode translates line end
'spam\nSPAM\n'

>>> open('spam.txt', 'r', encoding="utf-8').read()

'spam\nSPAM\n'

If this file is instead saved as UTF-8 in Notepad, it is prepended with a 3-byte UTF-8
BOM sequence, and we need to give a more specific encoding name (“utf-8-sig”) to
force Python to skip the marker:

>>> open('spam.txt', 'rb').read() # UTF-8 with 3-byte BOM
b'\xef\xbb\xbfspam\r\nSPAM\r\n'

>>> open('spam.txt', 'r').read()

"injspam\nSPAM\n'

>>> open('spam.txt', 'r', encoding="utf-8"').read()
"\ufeffspam\nSPAM\n'

>>> open('spam.txt', 'r', encoding='utf-8-sig').read()
"spam\nSPAM\n'

If the file is stored as Unicode big endian in Notepad, we get UTF-16-format data in the
file, with 2-byte (16-bit) characters prepended with a 2-byte BOM sequence—the en-
coding name “utf-16” in Python skips the BOM because it is implied (since all UTF-16
files have a BOM), and “utf-16-be” handles the big-endian format but does not skip
the BOM (the second of the following fails to print on older Pythons):

>>> open('spam.txt', 'rb').read()

b" \xfe\xff\x00s\x00p\x00a\x00m\x00\r\x00\n\x00S\x00P\x00A\x00M\x00\r\x00\n"
>>> open('spam.txt', 'r').read()
"\xfey\x00s\x00p\x00a\x00m\x00\n\x00\n\x00S\x00P\x00A\x00M\x00\n\x00\n"

>>> open('spam.txt', 'r', encoding='utf-16"').read()

"spam\nSPAM\n'

>>> open('spam.txt', 'r', encoding='utf-16-be').read()

"\ufeffspam\nSPAM\n'

>>> open('temp.txt', 'w', encoding='utf-8').write('spam\nSPAM\n")
10

>>> open('temp.txt', 'rb').read() # No BOM
b'spam\r\nSPAM\r\n'

>>> open('temp.txt', 'w', encoding='utf-8-sig').write('spam\nSPAM\n'") D ro p p I n g

10

"temp.txt', 'rb').read # Wrote BOM

e e the BOM
"temp.txt', 'r').read :

o s In Python

>>> open('temp.txt', 'r', encoding='utf-8').read() # Keeps BOM
"\ufeffspam\nSPAM\n'

>>> open('temp.txt', 'r', encoding="utf-8-sig').read() # Skips BOM
"spam\nSPAM\n'

